September 2 – An Ill Wind

Today’s factismal: The lightning in a Category 1 hurricane has enough power to run a house for more than 300 years.

If you read the news today, you know that Hurricane Hermine has come aground in Florida. This ended the long dry spell for hurricanes damaging the US mainland (though Sandy was a hurricane in 2012, it had been downgraded to tropical storm before it came ashore); it was the first time in eleven years that the US mainland was hit. Of course, you don’t have to get a hurricane to get lots of storm damage, just ask the folks who sat through Sandy or Allison. Although it is too early for firm estimates, experts think that the damage from this storm will end up costing the US at least $5 billion.

A satellite image of Hurricane Sandy showing the temperature differences in the clouds (Image courtesy NASA)

A satellite image of Sandy showing the temperature differences in the clouds
(Image courtesy NASA)

So what causes all of that damage? The short answer is “energy”. Hurricanes are nature’s way of taking heat from the equator (where it is hot) and moving it to the poles (where it is cold). They do that by using the heat to evaporate water, which forms clouds, which forms storms. Because that heat also causes the air to expand, it drives winds which can drive water in the form of storm surge. Add it all together and you’ve got a lot of energy moving around, looking for something to break – like Florida.

Hurricane Hermine making landfall in Florida (Image courtesy NOAA)

Hurricane Hermine making landfall in Florida
(Image courtesy NOAA)

But how much of the storms energy is released by the different parts of a hurricane’s life cycle? Scientists have run the numbers and found that a hurricane typically releases about 0.002% of its energy as lightning. Now that may sound like small potatoes, but for a Category 1 hurricane, it works out to be enough energy to run a typical household for 360 years or so. (The trick is catching the lightning.) Storm surge is what does most of the damage along the coast and yet it is just 0.02% of the total energy of the hurricane. The winds in a hurricane are what creates that lightning and tornadoes and other exciting side-effects. They are understandably much more powerful; they represent about 4% of the total energy in a hurricane. Interestingly, the sheer weight of the water falling from the sky as rain and hail releases about as much energy as the wind does. Thus far we’ve accounted for about 9% of the energy in a hurricane with the lightning and the storm surge and the winds and the rain. Where is the rest?

Some of the effects of a hurricane (Image courtesy NOAA)

Some of the effects of a hurricane
(Image courtesy NOAA)

It is released high in the sky as water vapor condenses into rain drops and is known among meteorology wonks as the latent heat of vaporization (which is just a fancy was of saying “the heat stored {latent} in vapor”). As the water vapor is carried higher into the atmosphere by the rising air currents, conditions change so that water vapor is no longer stable and water is; this is what forms clouds (which are just raindrops that are too small to fall). When the water condenses, it gives back some of the energy that was used to turn it into a gas; the rest of the energy has gone into raising the vapor high into the sky and powering all of the other special effects.

But here’s the odd thing. Even though we can use satellites to track hurricanes and help people get out of their way, we still don’t know how reliable our satellite images of the clouds that make up hurricanes are. And that’s where you come in. NASA has a citizen science program called S’COOL that asks for people like you and me to tell them what clouds are out there when the satellites pass by. To participate, float on over to:
http://scool.larc.nasa.gov/rover.html

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s